资源类型

期刊论文 206

会议视频 2

年份

2023 19

2022 18

2021 16

2020 9

2019 11

2018 10

2017 6

2016 31

2015 14

2014 10

2013 7

2012 8

2011 6

2010 6

2009 5

2008 6

2007 5

2006 3

2005 3

2003 2

展开 ︾

关键词

吸附 2

固体氧化物燃料电池 2

熔态还原 2

CO2 加氢 1

Fe、Co、Ru 碳化物 1

K 助剂 1

Mn 助剂 1

X射线成像 1

n 型碳纳米管 1

世界经济全 1

中国钢铁工业 1

产业链 1

企业信息化 1

元素硫 1

内球配位 1

再生 1

初轨确定算法;单X射线脉冲星探测器;相位增量;二体运动方程;加权最小二乘法 1

加压浸出 1

化工合成 1

展开 ︾

检索范围:

排序: 展示方式:

Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron

Rongbing FU,Na MU,Xiaopin GUO,Zhen XU,Dongsu BI

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 867-878 doi: 10.1007/s11783-015-0800-3

摘要: Nanoscale zerovalent iron (nZVI) synthesized using sepiolite as a supporter was used to investigate the removal kinetics and mechanisms of decabromodiphenyl ether (BDE-209). BDE-209 was rapidly removed by the prepared sepiolite-supported nZVI with a reaction rate that was 5 times greater than that of the conventionally prepared nZVI because of its high surface area and reactivity. The degradation of BDE-209 occurred in a stepwise debromination manner, which followed pseudo-first-order kinetics. The removal efficiency of BDE-209 increased with increasing dosage of sepiolite-supported nZVI particles and decreasing pH, and the efficiency decreased with increasing initial BDE-209 concentrations. The presence of tetrahydrofuran (THF) as a cosolvent at certain volume fractions in water influenced the degradation rate of sepiolite-supported nZVI. Debromination pathways of BDE-209 with sepiolite-supported nZVI were proposed based on the identified reaction intermediates, which ranged from nona- to mono-brominated diphenylethers (BDEs) under acidic conditions and nona- to penta-BDEs under alkaline conditions. Adsorption on sepiolite-supported nZVI particles also played a role in the removal of BDE-209. Our findings indicate that the particles have potential applications in removing environmental pollutants, such as halogenated organic contaminants.

关键词: sepiolite-supported nanoscale zerovalent iron     decabromodiphenyl ether     debromination     adsorption     mechanism    

Cation exchange resin supported nanoscale zero-valent iron for removal of phosphorus in rainwater runoff

XIE Bangmi,ZUO Jiane,GAN Lili,LIU Fenglin,WANG Kaijun

《环境科学与工程前沿(英文)》 2014年 第8卷 第3期   页码 463-470 doi: 10.1007/s11783-013-0575-3

摘要: Self-made cation exchange resin supported nanoscale zero-valent iron (R-nZVI) was used to remove phosphorus in rainwater runoff. 80% of phosphorus in rainwater runoff from grassland was removed with an initial concentration of 0.72 mg·L phosphorus when the dosage of R-nZVI is 8 g per liter rainwater, while only 26% of phosphorus was removed when using cation exchange resin without supported nanoscale zero-valent iron under the same condition. The adsorption capacity of R-nZVI increased up to 185 times of that of the cation exchange resin at a saturated equilibrium phosphorous concentration of 0.42 mg·L . Various techniques were implemented to characterize the R-nZVI and explore the mechanism of its removal of phosphate. Scanning electron microscopy (SEM) indicated that new crystal had been formed on the surface of R-nZVI. The result from inductive coupled plasma (ICP) indicated that 2.1% of nZVI was loaded on the support material. The specific surface area was increased after the load of nanoscale zero-valent iron (nZVI), according to the measurement of BET-N method. The result of specific surface area analysis also proved that phosphorus was removed mainly through chemical adsorption process. X-ray photoelectron spectroscopy (XPS) analysis showed that the new product obtained from chemical reaction between phosphate and iron was ferrous phosphate.

关键词: nanoscale zero-valent iron(R-nZVI)     cation exchange resin     rainwater runoff     phosphorus adsorption    

Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene

Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang

《环境科学与工程前沿(英文)》 2019年 第13卷 第4期 doi: 10.1007/s11783-019-1142-3

摘要:

• Biochar supported nanoscale zero-valent iron composite (nZVI/BC) was synthesized.

• nZVI/BC quickly and efficiently removed nitrobenzene (NB) in solution.

• NB removal by nZVI/BC involves simultaneous adsorption and reduction mechanism.

• nZVI/BC exhibited better catalytic activity, stability and durability than nZVI.

关键词: Biochar     Nanoscale zero-valent iron     Nitrobenzene     Reduction     Adsorption     Synergistic effec    

Effect of Fe loading quantity on reduction reactivity of nano zero-valent iron supported on chelating

Jialu SHI,Shengnan YI,Chao LONG,Aimin LI

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 840-849 doi: 10.1007/s11783-015-0781-2

摘要: In this study, nanoscale zero-valent iron (NZVI) were immobilized within a chelating resin (DOW 3N). To investigate the effect of Fe loading on NZVI reactivity, three NZVI-resin composites with different Fe loading were obtained by preparing Fe(III) solution in 0, 30 and 70% (v/v) ethanol aqueous, respectively; the bromate was used as a model contaminant. TEM reveals that increasing the Fe loading resulted in much larger size and poor dispersion of nanoscale iron particles. The results indicated that the removal efficiency of bromate and the rate constant ( ) were decreased with increasing the Fe loading. For the NZVI-resin composite with lower Fe loading, the removal efficiency of bromate declined more significantly with the increase of DO concentrations. Under acidic conditions, decreasing the pH value had the most significant influence on NZVI-R3 with highest Fe loading for bromate removal; however, under alkaline conditions, the most significant influence of pH was on NZVI-R1 with lowest Fe loading. The effects of co-existing anions , and were also investigated. All of the co-existing anions showed the inhibition to bromate reduction.

关键词: nanoscale zero valent iron     loading quantity     reduction     chelating resin     bromated    

The inactivation of bacteriophages MS2 and PhiX174 by nanoscale zero-valent iron: Resistance difference

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1529-4

摘要:

• The resistance of phage PhiX174 to nZVI was much stronger than that of MS2.

关键词: Nanoscale zero-valent iron (nZVI)     MS2     PhiΧ174     Resistance     Inactivation     Pathogenic microorganisms    

Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment

Yanlai HAN,Michael D. Y. YANG,Weixian ZHANG,Weile YAN

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 813-822 doi: 10.1007/s11783-015-0784-z

摘要: Nanoscale iron particles (nZVI) is one of the most important engineered nanomaterials applied to environmental pollution control and abatement. Although a multitude of synthesis approaches have been proposed, a facile method to screen the reactivity of candidate nZVI materials produced using different methods or under varying synthesis conditions has yet been established. In this study, four reaction parameters were adjusted in the preparation of borohydride-reduced nZVI. The reductive properties of the resultant nanoparticles were assayed independently using two model aqueous contaminants, Cu(II) and nitrate. The results confirm that the reductive reactivity of nZVI is most sensitive to the initial concentration of iron precursor, borohydride feed rate, and the loading ratio of borohydride to ferric ion during particle synthesis. Solution mixing speed, in contrast, carries a relative small weight on the reactivity of nZVI. The two probing reactions (i.e., Cu(II) and nitrate reduction) are able to generate consistent and quantitative inference about the mass-normalized surface activity of nZVI. However, the nitrate assay is valid in dilute aqueous solutions only (50 mg·L or lower) due to accelerated deactivation of iron surface at elevated nitrate concentrations. Additional insights including the structural and chemical makeup of nZVI can be garnered from Cu(II) reduction assessments. The reactivity assays investigated in this study can facilitate screening of candidate materials or optimization of nZVI production parameters, which complement some of the more sophisticated but less chemically specific material characterization methods used in the nZVI research.

关键词: iron nanoparticles     nanoscale iron particles (nZVI)     synthesis     characterization     Cu(II) reduction     nitrate reduction    

Nanoscale Zero-Valent Iron (nZVI) for Heavy Metal Wastewater Treatment: A Perspective

Shaolin Li,Lei Li,Weixian Zhang,

《工程(英文)》 doi: 10.1016/j.eng.2023.08.012

摘要: Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater (HMW) worldwide annually, posing a severe challenge to conventional wastewater treatment plants and harming the environment. HMW is traditionally treated via chemical precipitation using lime, caustic, or sulfide, but the effluents do not meet the increasingly stringent discharge standards. This issue has spurred an increase in research and the development of innovative treatment technologies, among which those using nanoparticles receive particular interest. Among such initiatives, treatment using nanoscale zero-valent iron (nZVI) is one of the best developed. While nZVI is already well known for its site-remediation use, this perspective highlights its application in HMW treatment with metal recovery. We demonstrate several advantages of nZVI in this wastewater application, including its multifunctionality in sequestrating a wide array of metal(loid)s (> 30 species); its capability to capture and enrich metal(loid)s at low concentrations (with a removal capacity reaching 500 mg·g–1 nZVI); and its operational convenience due to its unique hydrodynamics. All these advantages are attributable to nZVI’s diminutive nanoparticle size and/or its unique iron chemistry. We also present the first engineering practice of this application, which has treated millions of cubic meters of HMW and recovered tons of valuable metals (e.g., Cu and Au). It is concluded that nZVI is a potent reagent for treating HMW and that nZVI technology provides an eco-solution to this toxic waste.

关键词: Nanoscale zero-valent iron     Wastewater     Heavy metal     Resource recovery    

Excellent performance of Cu-Mn/Ti-sepiolite catalysts for low-temperature CO oxidation

Yong Song,Lisha Liu,Zhidan Fu,Qing Ye,Shuiyuan Cheng,Tianfang Kang,Hongxing Dai

《环境科学与工程前沿(英文)》 2017年 第11卷 第2期 doi: 10.1007/s11783-017-0908-8

摘要: Sepiolite is clay mineral with a 2:1 layered structure. Ti-pillars have an impact on physicochemical property of the sample. 30Mn5Cu/Ti-Sep shows excellent catalytic activity for the oxidation of CO. The interaction, reducibility, and oxygen mobility govern the activity. The Ti-modified sepiolite (Ti-Sep)-supported Mn-Cu mixed oxide ( Mn5Cu/Ti-Sep) catalysts were synthesized using the co-precipitation method. The materials were characterized by the X-ray diffraction scanning electron microscope, N adsorption-desorption, H -TPR, O -TPD, and XPS techniques, and their catalytic activities for CO oxidation were evaluated. It was found that the catalytic activities of Mn5Cu/Ti-Sep were higher than those of 5Cu/Ti-Sep and 30Mn/Ti-Sep, and the Mn/Cu molar ratio had a distinct influence on catalytic activity of the sample. Among the Mn5Cu/Ti-Sep samples, the 30Mn5Cu/Ti-Sep catalyst showed the best activity (which also outperformed the 30Mn5Cu/Sep catalyst), giving the highest reaction rate of 0.875 × 10 mmol·g ·s and the lowest and of 56°C and 86°C, respectively. Moreover, the 30Mn5Cu/Ti-Sep possessed the best low-temperature reducibility, the lowest O desorption temperature, and the highest surface Mn /Mn atomic ratio. It is concluded that factors, such as the strong interaction between the copper or manganese oxides and the Ti-Sep support, good low-temperature reducibility, and good mobility of chemisorbed oxygen species, were responsible for the excellent catalytic activity of 30Mn5Cu/Ti-Sep.

关键词: Ti-modified sepiolite     Supported Mn-Cu mixed oxide     Low-temperature reducibility     Strong metal-support interaction     CO oxidation    

Catalytic ozonation performance and surface property of supported Fe

Zhendong YANG, Aihua LV, Yulun NIE, Chun HU

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 451-456 doi: 10.1007/s11783-013-0509-0

摘要: Fe O was supported on mesoporous Al O or SiO (50 wt.%) using an incipient wetness impregnation method, and Fe O /Al O exhibited higher catalytic efficiency for the degradation of 2,4-dichlorophenoxyacetic acid and -chlorobenzoic acid aqueous solution with ozone. The effect and morphology of supported Fe O on catalytic ozonation performance were investigated based on the characterization results of X-ray diffraction, X-ray photoelectron spectroscopy, BET analysis and Fourier transform infrared spectroscopy. The results indicated that the physical and chemical properties of the catalyst supports especially their Lewis acid sites had a significant influence on the catalytic activity. In comparison with SiO , more Lewis acid sites existed on the surface of Al O , resulting in higher catalytic ozonation activity. During the reaction process, no significant Fe ions release was observed. Moreover, Fe O /Al O exhibited stable structure and activity after successive cyclic experiments. The results indicated that the catalyst is a promising ozonation catalyst with magnetic separation in drinking water treatment.

关键词: heterogeneous catalytic ozonation     iron oxides     supports     surface Lewis acid sites    

Enhanced activity of bimetallic Fe-Cu catalysts supported on ceria toward water gas shift reaction: synergistic

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1962-1972 doi: 10.1007/s11705-023-2359-z

摘要: Within the “hydrogen chain”, the high-temperature water gas shift reaction represents a key step to improve the H2 yield and adjust the H2/COx ratio to fit the constraints of downstream processes. Despite the commercial application of the high-temperature water gas shift, novel catalysts characterized by higher intrinsic activity (especially at low temperatures), good thermal stability, and no chromium content are needed. In this work, we propose bimetallic iron-copper catalysts supported on ceria, characterized by low active phase content (iron oxide + copper oxide < 5 wt %). Fresh and used samples were characterized by inductively coupled plasma mass spectrometry, X-ray diffraction, nitrogen physisorption, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, and temperature programmed reduction in hydrogen to relate physicochemical features and catalytic activity. The sample with iron/copper ≈ 1 and 4 wt % active phase content showed the best catalytic properties in terms of turnover frequency, no methane formation, and stability. Its unique properties were due to both strong iron-copper interaction and strong metal-support interaction, leading to outstanding redox behavior.

关键词: water gas shift     iron     copper     bimetallic catalysts     ceria     hydrogen    

An adsorption study of

Lingxiao FU, Jianhua ZU, Enxi GU, Huan WANG, Linfeng HE

《能源前沿(英文)》 2020年 第14卷 第1期   页码 11-17 doi: 10.1007/s11708-019-0634-y

摘要: Nanoscale zero-valent iron (nZVI) supported on D001 resin (D001-nZVI) was synthesized for adsorption of high solubility and mobility radionuclide Tc. Re(VII), a chemical substitute for Tc, was utilized in batch experiments to investigate the feasibility and adsorption mechanism toward Tc(VII). Factors (pH, resin dose) affecting Re(VII) adsorption were studied. The high adsorption efficiency of Re(VII) at pH= 3 and the solid-liquid ratio of 20 g/L. X-ray diffraction patterns revealed the reduction of into ReO immobilized in D001-nZVI. Based on the optimum conditions of Re(VII) adsorption, the removal experiments of Tc(VII) were conducted where the adsorption efficiency of Tc(VII) can reach 94%. Column experiments showed that the Thomas model gave a good fit to the adsorption process of Re(VII) and the maximum dynamic adsorption capacity was 0.2910 mg/g.

关键词: technetium     nanoscale zero-valent iron (nZVI)     D001 resin     adsorption    

Effect of humic acid and metal ions on the debromination of BDE209 by nZVM prepared from steel pickling waste liquor

Yuling CAI,Bin LIANG,Zhanqiang FANG,Yingying XIE,Eric Pokeung TSANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 879-887 doi: 10.1007/s11783-014-0764-8

摘要: As a promising in situ remediation technology, nanoscale zero-valent iron (nZVI) can remove polybrominated diphenyl ethers such as decabromodiphenyl ether (BDE209) effectively, However its use is limited by its high production cost. Using steel pickling waste liquor as a raw material to prepare nanoscale zero-valent metal (nZVM) can overcome this deficiency. It has been shown that humic acid and metal ions have the greatest influence on remediation. The results showed that nZVM and nZVI both can effectively remove BDE209 with little difference in their removal efficiencies, and humic acid inhibited the removal efficiency, whereas metal ions promoted it. The promoting effects followed the order Ni >Cu >Co and the cumulative effect of the two factors was a combination of the promoting and inhibitory individual effects. The major difference between nZVM and nZVI lies in their crystal form, as nZVI was found to be amorphous while that of nZVM was crystal. However, it was found that both nZVM and nZVI removed BDE209 with similar removal efficiencies. The effects and cumulative effects of humic acid and metal ions on nZVM and nZVI were very similar in terms of the efficiency of the BDE209 removal.

关键词: steel pickling waste liquor     nanoscale zero-valet metal     nanoscale zero-valent iron     humic acid     metal ion    

Fe-Mn-sepiolite as an effective heterogeneous Fenton-like catalyst for the decolorization of reactive

Chengyuan SU,Weiguang LI,Xingzhe LIU,Xiaofei HUANG,Xiaodan YU

《环境科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 37-45 doi: 10.1007/s11783-014-0729-y

摘要: A study of the decolorization of reactive brilliant blue in an aqueous solution using Fe-Mn-sepiolite as a heterogeneous Fenton-like catalyst has been performed. The Fourier transform infrared (FTIR) spectra of the catalyst showed bending vibrations of the Fe-O. The X-ray diffraction (XRD) patterns of the catalyst showed characteristic diffraction peaks of α-Fe O , γ-Fe O and MnO. A four factor central composite design (CCD) coupled with response surface methodology (RSM) was applied to evaluate and optimize the important variables (catalyst addition, hydrogen peroxide dosage, initial pH value and initial dye concentration). When the reaction conditions were catalyst dosage= 0.4 g, [H O ]= 0.3 mL, pH= 2.5, [reactive brilliant blue] = 50 mg·L , and volume of solution= 500 mL at room temperature, the decolorization efficiency of reactive brilliant blue was 91.98% within 60 min. Moreover, the Fe-Mn-sepiolite catalyst had good stability for the degradation of reactive brilliant blue even after six cycles. Leaching of iron ions (<0.4 mg·L ) was observed. The decoloring process was reactive brilliant blue specific via a redox reaction. The benzene ring and naphthalene ring were first oxidized to open ring; these were then oxidized to the alcohol and carboxylic acid. The reactive brilliant blue was decomposed mainly by the attack of ·OH radicals including surface-bound ·OH radicals generated on the catalyst surface.

关键词: Fe-Mn-sepiolite catalyst     heterogeneous Fenton-like     reactive brilliant blue     homogeneous precipitation method     hydroxyl radical    

Removing polybrominated diphenyl ethers in pure water using Fe/Pd bimetallic nanoparticles

Min ZHANG,Jian LU,Zhencheng XU,Yiliang HE,Bo ZHANG,Song JIN,Brian BOMAN

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 832-839 doi: 10.1007/s11783-015-0778-x

摘要: Polybrominated diphenyl ethers (PBDEs) have been widely used as fire-retardants. Due to their high production volume, widespread usage, and environmental persistence, PBDEs have become ubiquitous contaminants in various environments.Nanoscale zero-valent iron (ZVI) is an effective reductant for many halogenated organic compounds. To enhance the degradation efficiency, ZVI/Palladium bimetallic nanoparticles (nZVI/Pd) were synthesized in this study to degrade decabromodiphenyl ether (BDE209) in water. Approximately 90% of BDE209 was rapidly removed by nZVI/Pd within 80 min, whereas about 25% of BDE209 was removed by nZVI. Degradation of BDE209 by nZVI/Pd fits pseudo-first-order kinetics. An increase in pH led to sharply decrease the rate of BDE209 degradation. The degradation rate constant in the treatment with initial pH at 9.0 was more than 6.8 × higher than that under pH 5.0. The degradation intermediates of BDE209 by nZVI/Pd were identified and the degradation pathways were hypothesized. Results from this study suggest that nZVI/Pd may be an effective tool for treating polybrominated diphenyl ethers (PBDEs) in water.

关键词: degradation     bimetallic nanoparticles     nanoscale zero-valent iron     polybrominated diphenyl ethers    

Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological

Yuebing SUN,Dan ZHAO,Yingming XU,Lin WANG,Xuefeng LIANG,Yue SHEN

《环境科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 85-92 doi: 10.1007/s11783-014-0689-2

摘要: Stabilization in the remediation of heavy metal contaminated soils has been gaining prominence because of its cost-effectiveness and rapid implementation. In this study, microbial properties such as microbial community and enzyme activities, chemical properties such as soil pH and metal fraction, and heavy metal accumulation in spinach ( ) were considered in assessing stabilization remediation effectiveness using sepiolite. Results showed that soil pH values increased with rising sepiolite concentration. Sequential extraction results indicated that the addition of sepiolite converted significant amounts of exchangeable fraction of Cd and Pb into residual form. Treatments of sepiolite were observed to reduce Cd and Pb translocation from the soil to the roots and shoots of spinach. Concentrations of Cd and Pb exhibited 12.6%–51.0% and 11.5%–46.0% reduction for the roots, respectively, and 0.9%–46.2% and 43.0%–65.8% reduction for the shoots, respectively, compared with the control group. Increase in fungi and actinomycete counts, as well as in catalase activities, indicated that soil metabolic recovery occurred after sepiolite treatments.

关键词: stabilization remediation     heavy metals     sepiolite     soil quality     spinach (Spinacia oleracea)    

标题 作者 时间 类型 操作

Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron

Rongbing FU,Na MU,Xiaopin GUO,Zhen XU,Dongsu BI

期刊论文

Cation exchange resin supported nanoscale zero-valent iron for removal of phosphorus in rainwater runoff

XIE Bangmi,ZUO Jiane,GAN Lili,LIU Fenglin,WANG Kaijun

期刊论文

Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene

Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang

期刊论文

Effect of Fe loading quantity on reduction reactivity of nano zero-valent iron supported on chelating

Jialu SHI,Shengnan YI,Chao LONG,Aimin LI

期刊论文

The inactivation of bacteriophages MS2 and PhiX174 by nanoscale zero-valent iron: Resistance difference

期刊论文

Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment

Yanlai HAN,Michael D. Y. YANG,Weixian ZHANG,Weile YAN

期刊论文

Nanoscale Zero-Valent Iron (nZVI) for Heavy Metal Wastewater Treatment: A Perspective

Shaolin Li,Lei Li,Weixian Zhang,

期刊论文

Excellent performance of Cu-Mn/Ti-sepiolite catalysts for low-temperature CO oxidation

Yong Song,Lisha Liu,Zhidan Fu,Qing Ye,Shuiyuan Cheng,Tianfang Kang,Hongxing Dai

期刊论文

Catalytic ozonation performance and surface property of supported Fe

Zhendong YANG, Aihua LV, Yulun NIE, Chun HU

期刊论文

Enhanced activity of bimetallic Fe-Cu catalysts supported on ceria toward water gas shift reaction: synergistic

期刊论文

An adsorption study of

Lingxiao FU, Jianhua ZU, Enxi GU, Huan WANG, Linfeng HE

期刊论文

Effect of humic acid and metal ions on the debromination of BDE209 by nZVM prepared from steel pickling waste liquor

Yuling CAI,Bin LIANG,Zhanqiang FANG,Yingying XIE,Eric Pokeung TSANG

期刊论文

Fe-Mn-sepiolite as an effective heterogeneous Fenton-like catalyst for the decolorization of reactive

Chengyuan SU,Weiguang LI,Xingzhe LIU,Xiaofei HUANG,Xiaodan YU

期刊论文

Removing polybrominated diphenyl ethers in pure water using Fe/Pd bimetallic nanoparticles

Min ZHANG,Jian LU,Zhencheng XU,Yiliang HE,Bo ZHANG,Song JIN,Brian BOMAN

期刊论文

Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological

Yuebing SUN,Dan ZHAO,Yingming XU,Lin WANG,Xuefeng LIANG,Yue SHEN

期刊论文